Showing: 1 - 2 of 2 RESULTS

Development of cost-efficient electrocatalyst for hydrogen production

Development of cost-efficient electrocatalyst for hydrogen production
Schematic diagram of the step-by-step synthesis process for the preparation of Ti.MoP. Credit: Korea Institue of Science and Technology(KIST)

The key to promoting the hydrogen economy represented by hydrogen vehicles is to produce hydrogen for electricity generation at an affordable price. Hydrogen production methods include capturing by-product hydrogen, reforming fossil fuel, and electrolyzing water. Water electrolysis in particular is an eco-friendly method of producing hydrogen, in which the use of a catalyst is the most important factor in determining the efficiency and price competitiveness. However, water electrolysis devices require a platinum (Pt) catalyst, which exhibits unparalleled performance when it comes to speeding up the hydrogen generation reaction and enhancing long-term durability but is high in cost, making it less competitive compared to other methods price-wise.


There are water electrolysis devices that vary in terms of the electrolyte that dissolves in water and allows current to flow. A device that uses a proton exchange membrane (PEM), for instance, exhibits a high rate of hydrogen generation reaction even with the use of a catalyst made of a transition metal instead of an expensive Pt-based catalyst. For this reason, there has been a great deal of research on the technology for commercialization purposes. While research has been focused on achieving high reaction activity, research on increasing the durability of transition metals that easily corrode in an electrochemical environment has been relatively neglected.

The Korea Institute of Science and Technology (KIST) announced that a team headed by Dr. Sung-Jong Yoo from the Center for Hydrogen-Fuel Cell Research developed a catalyst made of a transition metal with long-term stability that could improve hydrogen production efficiency without the use of platinum by overcoming the durability issue of non-platinum catalysts.

The research team injected a small amount of titanium (Ti) into molybdenum phosphide (MoP), a low-cost transition metal, through a spray pyrolysis process. Because it is inexpensive and relatively easy to handle, molybdenum is used as a catalyst for energy conversion and storage devices, but its weakness includes the fact that it corrodes easily as it is vulnerable to oxidation.

In the case of the catalyst developed by the research team at KIST, it was found that the electronic structure of each material became completely restructured during the synthesis process, and it resulted in the same level of hydrogen evolution reaction (HER) activity as the platinum catalyst. The changes in the electronic structure addressed the issue of high corrosiveness, thereby improving durability by 26 times compared to existing transition metal-based catalysts. This is expected to greatly accelerate the commercialization of non-platinum catalysts.

Dr. Yoo of KIST said, “This study is significant in that it improved the stability of a transition metal catalyst-based water electrolysis system, which had been its biggest limitation. I hope that this study, which boosted the hydrogen evolution reaction efficiency of the transition metal catalyst to the level of platinum catalysts and at the same time improved the stability will contribute to earlier commercialization of eco-friendly hydrogen energy production technology.”


High-performance single-atom catalysts for

Quality control mechanism closes the protein production ‘on-ramps’ in cells

Quality control mechanism closes the protein production 'on-ramps'
An illustration of stalled ribosomes as stalled cars on a freeway. New work shows that factors GIGYF2 and 4EHP prevent translation from being initiated on problematic messenger RNA fragments. This is akin to closing an on-ramp to prevent additional traffic backups after an incident. Credit: Kamena Kostova and Navid Marvi.

Recent work led by Carnegie’s Kamena Kostova revealed a new quality control system in the protein production assembly line with possible implications for understanding neurogenerative disease.


The DNA that comprises the chromosomes housed in each cell’s nucleus encodes the recipes for how to make proteins, which are responsible for the majority of the physiological actions that sustain life. Individual recipes are transcribed using messenger RNA, which carries this piece of code to a piece of cellular machinery called the ribosome. The ribosome translates the message into amino acids—the building blocks of proteins.

But sometimes messages get garbled. The resulting incomplete protein products can be toxic to cells. So how do cells clean up in the aftermath of a botched translation?

Some quality assurance mechanisms were already known—including systems that degrade the half-finished protein product and the messenger RNA that led to its creation. But Kostova led a team that identified a new tool in the cell’s kit for preventing damage when protein assembly goes awry. Their work was published by Molecular Cell.

Using CRISPR-Cas9-based genetic screening, the researchers discovered a separate, and much needed, device by which the cell prevents that particular faulty message from being translated again. They found two factors, called GIGYF2 and 4EHP, which prevent translation from being initiated on problematic messenger RNA fragments.

“Imagine that the protein assembly process is a highway and the ribosomes are cars traveling on it,” Kostova explained. “If there’s a bad message producing incomplete protein products, it’s like having a stalled car or two on the road, clogging traffic. Think of GIGYF2 and 4EHP as closing the on-ramp, so that there is time to clear everything away and additional cars don’t get stalled, exacerbating the problem.”

Loss of GIGYF2 has previously been associated with neurodegenerative and neurodevelopmental problems. It is possible that these issues are caused by the buildup of defective proteins that occurs without the ability to prevent translation on faulty messenger RNAs.


Mechanism discovered how the coronavirus hijacks the cell


More information:
Kelsey L. Hickey et al, GIGYF2 and 4EHP Inhibit Translation Initiation of Defective Messenger RNAs to Assist Ribosome-Associated Quality Control, Molecular Cell (2020). DOI: 10.1016/j.molcel.2020.07.007
Provided by
Carnegie Institution for Science

Citation:
Quality control mechanism closes the protein production ‘on-ramps’ in cells (2020, October 8)
retrieved 8 October 2020
from https://phys.org/news/2020-10-quality-mechanism-protein-production-on-ramps.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

Source Article