Showing: 1 - 2 of 2 RESULTS

Asteroid Bennu Could Shed Light on How Ingredients for Life Reached Earth | Smart News

A series of studies published last week in the journals Science and Science Advances offer a new, detailed look at the makeup of a small asteroid called Bennu. The studies come just before NASA’s OSIRIS-REx spacecraft plans to pick up a sample from the asteroid’s surface on October 20 and return with it to Earth in 2023.

Before the OSIRIS-REx spacecraft reached the asteroid in 2018, astronomers could only study it with telescopes that couldn’t make out details smaller than cities or states, Michael Greshko reports for National Geographic. OSIRIS-REx allows astronomers to map details the size of basketball courts, sheets of paper and postage stamps, depending on the imaging tool they used.

“The reason there’s so much interest in asteroids is a lot of them are very primitive, from when the Solar System formed, and they didn’t change with wind and water, or weather like on Earth,” planetary scientist Amy Simon of NASA’s Goddard Space Flight Center tells Passant Rabie at Inverse. “They’re still more pristine than anything you could find in the universe.”

Researchers chose Bennu for close study and a sample-return mission because it is a relatively rare type of asteroid that’s rich in carbon-containing molecules, or organics, and because it formed early in the history of our solar system, Neel Patel reports for the MIT Technology Review. It’s also relatively close to Earth.

Bennu is about a third of a mile wide, made of a pile of rubble that is loosely held together by its own gravity, per National Geographic. The rubble resulted from a collision with a 60-mile-wide object in the asteroid belt that destroyed Bennu’s parent body, a larger asteroid. Bennu probably formed between 700 million and two billion years ago somewhere between Mars and Jupiter, and has drifted closer to Earth since then.

Measurements of the way that infrared light reflects off of Bennu’s surface revealed that about 98 percent the asteroid’s surface is coated in carbon-containing, organic molecules. And bright veins, narrow but about three feet long, suggest that water flowed on Bennu’s parent body, per the Technology Review. However, the surface of an asteroid has a poor chance of hosting early life.

“You’re in the vacuum of space, there’s no atmosphere, you’re looking at a lot of irradiation, it’s cold – you wouldn’t want to sit on the surface,” says Goddard Space Flight Center planetary scientist Hannah Kaplan to Leah Crane at New Scientist. “It’s not a favorable environment per se, but it does have a lot of the factors that make a place technically habitable.”

The OSIRIS-REx mission is investigating whether fragments of an object like Bennu’s parent body may have carried organic molecules, the basic ingredients for life, to Earth. A meteorite carrying organic molecules could have ferried them through Earth’s atmosphere to the chemical soup where life eventually evolved.

“Every day we have stuff raining down that we don’t see,” Simon tells Inverse. “But early on in the Solar System, there would’ve been

Newly found dinosaur fossils shed light on toothless, two-fingered species


Here’s a look at what the Oksoko avarsan dinosaurs might have looked like way back when.

Michael W. Skrepnick

Newly discovered fossils of a toothless, parrot-like dinosaur species that lived more than 68 million years ago reveal a creature with two fingers on each forearm. That’s one less digit than its close dino relatives had. 

The fossils imply that the dinosaurs may have evolved forelimb adaptations that enabled them to spread during the Late Cretaceous Period, researchers say in a new study published Wednesday in The Royal Society Open Science journal. Paleontologists from the University of Edinburgh found a number of complete skeletons of the new species during a dig in Mongolia’s Gobi Desert. 

The feathered, omnivorous Oksoko avarsan grew to around 6.5 feet (2 meters) long. In addition to two functional digits on each forearm, the dinosaurs appeared to have large, toothless beaks, much like modern-day parrots. 

“Its two-fingered hand prompted us to look at the way the hand and forelimb changed throughout the evolution of oviraptors — which hadn’t been studied before,” University of Edinburgh professor and study co-author Gregory Funston said in a statement. “This revealed some unexpected trends that are a key piece in the puzzle of why oviraptors were so diverse before the extinction that killed the dinosaurs.”


The fossil of an Oksoko avarsan’s two-fingered hand.

Gregory Funston

The dinosaurs’ arms and hands changed dramatically during slow migrations to new geographic areas in the Gobi Desert and North America.


The fossil remains of three dinosaurs preserved resting together.

Gregory Funston

The newly discovered fossils of four young Oksoko avarsan dinosaurs show them resting together, which the scientists think may be further proof the dinosaurs were social as juveniles. 

“Oksoko avarsan is interesting because the skeletons are very complete and the way they were preserved resting together shows that juveniles roamed together in groups,” Funston said.

Researchers from the University of Alberta and Philip J. Currie Dinosaur Museum in Canada, Hokkaido University in Japan, and the Mongolian Academy of Sciences also contributed to the study.

Now playing:
Watch this:

Tyrannosaurus rex has a surprise for you


Source Article